Description
Comment faire émerger des bonnes idées parmi les citoyens ?
Comment mesurer leur popularité ?
Comment repérer les sujets de controverse ?
David Mas, Chief AI Officer chez Make.org nous explique comment il résout ces problèmes grâce à ses algorithmes et nous parle des enjeux de la mobilisation citoyenne à grande échelle via la technologie et l'intelligence artificielle, ainsi que de l'impact réel des consultations citoyennes massives.
🔑 MOTS CLÉS
NLP (Natural Language Processing) : Traitement automatique du langage naturel. Cette discipline de l'IA permet aux ordinateurs de comprendre et traiter le langage humain, en analysant les données textuelles. Chez Make.org, ils l'utilisent pour analyser et regrouper les propositions des citoyens
Fine-tuning de modèles : Technique qui consiste à ajuster un modèle de machine learning pré-entraîné sur un ensemble de données spécifiques pour améliorer ses performances dans des tâches spécifiques. Make.org utilise cette approche pour rendre les modèles plus efficaces, responsables et adaptés à des cas d'utilisation démocratiques
RAG (Retrieval-Augmented Generation) : Modèle d'IA qui combine génération de texte et récupération d'informations pertinentes en temps réel pour répondre à des questions. Cela permet de créer des réponses plus précises en consultant des bases de données externes
Algorithme d'attribution : Un système qui distribue de manière équitable les propositions faites par les utilisateurs, en s'assurant qu'elles ont toutes une chance égale d'émerger. Ce processus est crucial dans le cadre des consultations citoyennes massives
🎙 SOUTENEZ LE PODCAST
> Abonnez-vous 🔔
> Laissez 5 étoiles et un avis 🥰
Sur Spotify : ici
Sur Apple Podcast : ici
Sur Deezer : ici
Sur Google Podcast : ici
👋 PLUS DE CONTENU DATA ?
> Suivez-moi sur LinkedIn (tips/réflexions) ici 🤳
> Suivez-nous sur Tiktok 📳
> Abonnez-vous à notre chaîne Youtube
Hébergé par Ausha. Visitez ausha.co/politique-de-confidentialite pour plus d'informations.